Axioms of Plane Geometry 2

Aaron Cinzori

Fall 2009
Undefined Terms: Point, Line, Distance, Half-plane, Angle measure, Area

Axiom 5.3.1 (The Existence Postulate): The collection of all points forms a *nonempty* set. There is *more than one* point in that set.

Axiom 5.3.3 (The Incidence Postulate): Every line is a set of points. For every pair of distinct points A and B, there is exactly one line ℓ such that $A \in \ell$ and $B \in \ell$.

Axiom 5.4.1 (The Ruler Postulate): For every pair of points P and Q, there exists a real number PQ, called the distance from P to Q. For each line ℓ, there is a one-to-one correspondence from ℓ to \mathbb{R} such that if P and Q are points on the line that correspond to the real numbers x and y, respectively, then $PQ = |x - y|$.
Def: Plane, lie on, external point, parallel, segment, ray, length, congruent.

Def: Let A, B, and C be three distinct points. The point C is *between* A and B, written $A \ast C \ast B$, if $C \in \overrightarrow{AB}$ and $AC + CB = AB$.

Theorem 5.3.7: If ℓ and m are two distinct, nonparallel lines, then there exists exactly one point P such that P lies on both ℓ and m.
Theorem (Theorem 5.4.6:)

If P and Q are any two points, then

1. $PQ = QP$,
2. $PQ \geq 0$, and
3. $PQ = 0$ if and only if $P = Q$.

Corollary (Corollary 5.4.7:)

$A \ast C \ast B$ if and only if $B \ast C \ast A$.
Def: A (semi-)metric is a function $D : \mathbb{P} \times \mathbb{P} \rightarrow \mathbb{R}$ such that

1. $D(P, Q) = D(Q, P)$ for every P and Q,
2. $D(P, Q) \geq 0$ for every P and Q, and
3. $D(P, Q) = 0$ if and only if $P = Q$.

Ex (Euclidean): $d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.
Ex (Taxicab): $\rho((x_1, y_1), (x_2, y_2)) = |x_2 - x_1| + |y_2 - y_1|$.
Def: Let ℓ be a line. A one-to-one correspondence $f : \ell \to \mathbb{R}$ such that $PQ = |f(P) - f(Q)|$ for every P and Q on ℓ is called a *coordinate function* for the line ℓ and the number $f(P)$ is called the *coordinate of P*.

Theorem 5.4.14 (Ruler Placement): For every pair of distinct points P and Q, there is a coordinate function $f : \overrightarrow{PQ} \to \mathbb{R}$ such that $f(P) = 0$ and $f(Q) > 0$.
Def: A set of points S is a *convex set* if for every pair of points $A, B \in S$, $AB \subset S$.

Axiom 5.5.2 (Plane Separation Postulate): For every line ℓ, the points that do not lie on ℓ form two disjoint, nonempty sets H_1 and H_2, called *half-planes bounded by* ℓ, such that

1. Each of H_1 and H_2 is convex.
2. If $P \in H_1$ and $Q \in H_2$, then PQ intersects ℓ.

Notation: Given ℓ and external point A, H_A is the half-plane bounded by ℓ containing A.

Def: Let ℓ be a line with external points A and B. A and B are *on the same side of* ℓ if they are both in H_1 or both in H_2. They are on *opposite sides of* ℓ if one is in H_1 and the other is in H_2.
Def: Two rays \overrightarrow{AB} and \overrightarrow{AC} are opposite rays if they are not equal and $B \neq A \neq C$.

Def: An angle is the union of two nonopposite rays \overrightarrow{AB} and \overrightarrow{AC}. The point A is the vertex, and the rays are the sides.

Def: Interior of an angle, collinear, triangle.
Pasch’s Theorem: Let $\triangle ABC$ be a triangle and let ℓ be a line such that none of A, B, and C lies on ℓ. If ℓ intersects \overline{AB}, the ℓ also intersects either \overline{AC} or \overline{BC}.
Axiom 5.6.2 (The Protractor Postulate): For every angle \(\angle BAC \) there is a real number \(\mu(\angle BAC) \), called the measure of \(\angle BAC \), such that the following conditions are satisfied.

1. \(0^\circ \leq \mu(\angle BAC) < 180^\circ \) for every angle \(\angle BAC \).
2. \(\mu(\angle BAC) = 0^\circ \) if and only if \(\overrightarrow{AB} = \overrightarrow{AC} \).
3. (Angle Construction Postulate) For each real number \(r, 0 < r < 180 \), and for each half-plane \(H \) bounded by \(\overrightarrow{AB} \) there exists a unique ray \(\overrightarrow{AE} \) such that \(E \) is in \(H \) and \(\mu(\angle BAE) = r^\circ \).
4. (Angle Addition Postulate) If the ray \(\overrightarrow{AD} \) is between rays \(\overrightarrow{AB} \) and \(\overrightarrow{AC} \), then

\[
\mu(\angle BAD) + \mu(\angle DAC) + \mu(\angle BAC)
\]